Role of RT in myeloma

What we know and what we don't know

Yolanda Tseng, MD MPhil

Department of Radiation Oncology, University of Washington Fred Hutch Cancer Research Center

Disclosure

- Employer: University of Washington
- I have no conflicts of interest to disclose

Myeloma: Incurable, but treatable

Improved survival over time (median OS 10.5 y)

- By cytogenetics:
 - High-risk >6 y

W UNIVERSITY of WASHINGTON

• Standard risk >12 y

Anderson Clin Cancer Res 2016, Joseph JCO 2020

Myeloma: Incurable, but treatable

Improved survival over time (median OS 10.5 y)

- By cytogenetics:
 - High-risk >6 y
 - Standard risk >12 y

Myeloma ≠ Bone mets from solid tumor

Unique goals for an incurable cancer: achieve a response, prevent skeletal events, and with minimal toxicity

W UNIVERSITY of WASHINGTON

Anderson Clin Cancer Res 2016, Joseph JCO 2020

Role of RT for myeloma

Palliation of symptoms

- Uncomplicated bone (pain)
- Complicated bone
 - Compression of spinal cord, cauda, or nerve
 - Impending or path fracture
 - Prior surgery/RT
- Non-solitary plasmacytoma

Prevention

- Recalcification
 - \downarrow fracture risk
- Local control
 - \downarrow pain recurrence
 - ↓ neurologic
 complication risk

Bridging

- Palliate symptoms
- Prevent functional decline
- ?Augment immune response (priming)

Within the era of novel agents, RT still has many roles in myeloma management

Palliation of pain with low RT dose

University of Arizona, 1975-1990

• 101 patients (316 sites)

Duke/Durham VA, 2013-2019

35 patients (70 sites – all uncomplicated bone)

Doses as low as 10-12 Gy may achieve pain response

W UNIVERSITY of WASHINGTON

Do higher RT doses improve pain response?

Lithuanian University, 2010-2015

- Phase 3: 30 Gy/10 vs 8 Gy/1
- Included complicated lesions (e.g. 21% surgery)
- No difference in response
 - ORR: 84.5% (30 Gy) vs 74.4% (8 Gy)
 - CR: 69.4% vs 68.8%
- 4-wk QoL (EORTC QLQ-C30) improvement only with 30 Gy
 - More young patients (<65 y), new dx

How low can we go to palliate pain?

Ongoing ILROG collaborative study (NCT03858205)

- PI: Dr. Leslie Ballas
- Phase 2, multi-institutional study of 4 Gy/1-2 fx
- Uncomplicated bone lesions
- 45 out of 65 accrued (7/2023)
- Planned interim futility analysis after 40 patients
 - Pre-specified: CR+PR \geq 55%
 - Best response: CR 48%, PR 38%
- Supports continuation of trial

UNIVERSITY of WASHINGTON

Palliation of bone pain

- Range of effective doses (e.g. 8-30 Gy)
 - ORR 75-90%
 - Mechanism of response may involve non-tumor effects
 - Dose response seen in some but not all series → heterogeneity of lesions (e.g. complicated vs not)
- Rates of retreatment (~<10%)
 - Higher with BED ≤28 vs >28 Gy: 3.25% vs 1.83%

ILROG steering committee members, n=23

W UNIVERSITY of WASHINGTON

Mill Cancer 1980, Lee Radiat Oncol J 2016, Elhammali Hematologica 2020

Palliation of bone pain

Dose-response for <u>durability</u>?

	N	Median RT dose (range)	Outcome
University of Arizona*	101 pts	Mean 25 Gy	Dose not associated with probability or time to relapse
Leigh IJROBP 1993	316 sites	(3-60)	
Kyungpook National University Hospital* Lee Radiat Oncol J 2016	51 pts 87 sites	21 Gy (12-40)	In-field failure 16.3% (EQD2 ₁₀ ≤23.3 Gy) vs 9.5% (>23.3; p=.35)
Mount Sinai* Wang PRO 2019	130 pts 266 sites	20 Gy (2-40)	Pain recurrence (vs <20 Gy) 20- <30 Gy (HR 0.36, 0.14-0.94, p=.037) ≥30 Gy (HR 0.43, 0.15-1.25, p=.12)
MDACC*	82 spine sites	Only 4 treated to	Radiographic spine LC
Elhammali Hematologica 2020		≥30 Gy	BED (≤ or >28 Gy) HR 0.99 (0.87-1.13; p=.68)
Duke/Durham VA Price ARO 2021	35 pts	HDRT 20 Gy vs	No difference in duration of pain response HDRT vs LDRT
	70 sites	LDRT 4 Gy	(p=.91)

RT palliation of soft tissue disease

Includes:

- Cord/cauda compression
- Nerve root compression
- Non-solitary plasmacytoma

Palliation likely requires adequate shrinkage of tumor

- Several unknowns:
 - Role of spine decompression?
 - Dose for response?
 - Dose for control?
- University of Arizona: similar doses used for pain may be effective for soft tissue

Table 3. Mean dose and response rate by symptom

Symptom	Mean dose (Gy)	Response rate (CR + PR/total)
Pain	25.3 ± 7.4	97% (288/296)
Palpable mass	25.4 ± 3.4	100% (7/7)
Neurological impairment	28.2 ± 4.5	90% (18/20)

RT alone for cord/cauda compression

Retrospective series	University of Lubeck (n=238)
Presence of neurologic sxs	100% (motor deficit)
RT dose	Short (8 Gy/1, 20 Gy/5) Long (30 Gy/10, 37.5 Gy/15, 40 Gy/20)
Response	 ~1 month: 53% improved motor function 44% stable 64% of non-ambulatory (n=44) regained ability to walk
Other outcomes	 Local control (3-yr): 69% (short) vs 90% (long course; p=.29)

W UNIVERSITY of WASHINGTON

Rades Radiol Oncol 2016, Zijlstra J Bone Joint Surg Am 2023

RT alone for cord/cauda compression

Retrospective series	University of Lubeck (n=238)	MGH/Netherlands (n=162)
Presence of neurologic sxs	100% (motor deficit)	38% (motor and/or sensory deficit) 100% Bilsky grade 2 or 3
RT dose	Short (8 Gy/1, 20 Gy/5) Long (30 Gy/10, 37.5 Gy/15, 40 Gy/20)	30 Gy/10 most common (37%)
Response	 ~1 month: 53% improved motor function 44% stable 64% of non-ambulatory (n=44) regained ability to walk 	 12-24 months: 10% improved 73% stable 16% of those neuro intact at baseline deteriorated (17% overall)
Other outcomes	 Local control (3-yr): 69% (short) vs 90% (long course; p=.29) 	 12% with additional treatment (RT, surgery) ≤90 days Dose not associated with neuro outcome

Are there a subset of patients that may benefit from more therapy beyond RT alone?

RT palliation of soft tissue disease

Survey of ILROG steering committee members

Symptomatic, non-solitary plasmacytoma

UNIVERSITY of WASHINGTON

Tseng and Yang unpublished

Sometimes RT alone is not enough ...

Surgical decompression

- Bony retropulsion into spinal canal
- Prior RT limiting re-RT dose

Stabilization of impending/path fracture

- Long bone (Mirels' criteria)
- Spine (SINS score) fusion, vertebral augmentation
- Addresses pain from mechanical instability and improve bone healing (long bone)

Post-operative RT

Recommended unless oncologic resection performed

• No data in myeloma (e.g. Townsend IJROBP 1995)

Dose

- Higher RT dose may delay/prevent callus formation necessary for bone repair (animal models)
- Stabilization of bone (e.g. pinning) ≈ callus formation
 - → Theory: higher doses (e.g. 20-30 Gy) should not impair healing in a stabilized bone
 - Observed: BED≥30 Gy did not interfere with healing (7 fracture sites)
- Optimal dose unknown
 - MDACC: Median BED 25 Gy₁₀ (11.7-46.9) associated with 2 in-field recurrences (40 sites)
 - Dose not associated with local failure (continuous BED, HR 0.82 (0.60-1.11))

Post-operative RT target

GTV (+/- 1-2 cm along bone) Do not need to chase entire hardware

- Low rate of recurrence within same bone
 - 4 of 41 irradiated limbs (NYU)
 - Median 27.8 Gy to GTV+1-2 cm
- Low rate of recurrence when hardware not fully covered
 - 5 of 40 sites (12.5%) (MDACC)
 - Median 80% of hardware covered (28-100%)
 - Median BED 25 Gy₁₀

• 2-2.5 cm margin along bone from fracture as no pre-fracture imaging and GTV difficult to appreciate

RT for prevention of skeletal events

Recalcification

University Hospital Gemelli, 1996-2007

- N=52 MM or SP
- Median RT 38 Gy (range, 16-50)
- 42 evaluated for recalcification (X-ray, CT)
 - Achieved at median 6 mo (3-14)
 - CR 38%, PR 12%

UNIVERSITY of WASHINGTON

Improved spine stability

University Hospital Heidelberg, 2006-2016

- N=130 MM treated to spine
- Median RT 30 Gy (range, 20-40)
- Unstable lesions (Taneichi scoring system)
 - 51% (before RT), 41% (3 mo), 24% (6 mo)

Reduction vertebral fractures

University of Louvain, Brussels

 N=12 prospectively followed by MRI after spine RT (30-40 Gy/15-20)

	Radiated VB (n=57)	Unirradiated VB (n=147)
Fracture	5%	20%
New focal marrow lesion	4%	27%

Recalcification of bone after RT may improve bone stability and risk of fracture in spine

Lecouvet Br J Haematol 1997, Balducci Strahlenther Onk 2011, Lang CLML 2017

Recalcification: Is there a dose response?

	Ν	RT dose	Outcome
Heinrich-Heine- University Dusseldorf Matuschek Radiat Oncol 2015	81 pts 108 sites	Median 25 Gy/10 fx (range 8-50)	 CT and/or MRI (3 mo-1 yr after RT) 48% overall recalcification (CR 23%) Higher dose associated with better overall recalcification
Lithuanian University Rudzianskiene Strahlenther Onkol 2017	101 pts	8 Gy/1 vs 30 Gy/10	 Bone X-ray eval (94.1% pts) 33.7% overall recalc (CR 18%) No difference by dose

Limited data whether dose-response exists

Likely requires prospective studies with radiographic follow-up

Individualizing RT dose along a patient's course

My clinical practice

• Systemic therapy •	Anti-CD38 mAb (e.g. daratumumab) Lenalidomide Pomalidomide	 Anti-BCMA (e.g. CART, bi- specific)
Induction therapy(Stem cell transplant)	Bortezomib Carfilzomib	Alkylator containing agentsClinical trials

Diagnosis	Relapse #1	Relapse #2	Relapse #3	Relapse #4	Relapse #5
-----------	------------	------------	------------	------------	------------

Radiotherapy

- 20-30 Gy
- Smaller fraction sizes (e.g. 2.5-3 Gy/fx)

UNIVERSITY of WASHINGTON

• Goals: durability (e.g. spine), prevent skeletal events, minimize toxicity Dose/fx influenced by site, lesion type, disease burden, performance status, concurrent systemic therapy

- 8-20 Gy
- More hypofractionated fractions (e.g. 4-8 Gy/fx)
 - Goal: limit time on treatment

Safety with systemic therapy

Stem cell transplant

RT prior to stem cell transplant

- No difference in collection failures with RT prior to stem cell mobilization (11%) vs not (6%)
- RT patients required higher # leukapheresis sessions to reach collection goal
- No correlation between CD34+ yield, volume of irradiated bone marrow or EQD2

Safety with systemic therapy

Novel agents

Lenalidomide

- N=19 SP prospectively irradiated concurrently with len/dex
- NS higher heme tox (any grade) for RT+len vs RT alone
 - Thrombocytopenia: 10.5% vs 0% (p=.10)
 - Neutropenia: 15.8% vs
 3.7% (p=.18)

Proteosome inhibitors (PI)/IMiDs

Caution with RT concurrent with proteosome inhibitors

 Consider holding PI or decreasing dose/fx

- Similar findings for PI (University Hospital Muenster), especially for thrombocytopenia
- No difference in lab values RT vs RT+ST (Mount Sinai)

W UNIVERSITY of WASHINGTON

Shin CLML 2014, Mignot IJROBP 2020, Oertel Cancers 2023

Bridging RT for CAR-T cell therapy

Anti-B cell maturation antigen (BCMA) CAR-T

- Approved for r/r MM ≥4 lines systemic therapy
 - Unclear whether remissions are durable (c.f. LBCL)
- Role of RT
 - Palliate/prevent symptoms → maintain/improve performance status
- Optimal dose not known
- Consider delaying RT until after leukapheresis, especially if concerns for lymphopenia
 - Lower *in vitro* proliferation during manufacturing with RT <1 year and <100 days before apheresis (U Penn)
- Bridging RT appears safe
 - No difference with *in vivo* CART expansion (U Penn)

Bridging RT for CAR-T cell therapy

Α

Potential RT – CART synergism?

- 63F enrolled CART clinical trial
- RT for cord compression (T1-T8, 20 Gy/5) → C2-WBRT (20 Gy/5)
- IL6/CRP: Markers of CAR Tcell mediated CRS
- Increase in T-cell receptor diversity after RT

Session 7: CAR-T and new treatments later this afternoon

W UNIVERSITY of WASHINGTON

Smith Cancer Immunol Res 2019

Summary

- RT is an effective modality for palliation of myeloma, including pain, cord/nerve compression, and plasmacytomas
 - Excellent pain response with low RT doses
 - With improving survival, interest in other endpoints: local control, re-calcification, prevention of skeletal events \rightarrow unknown if higher doses are needed
 - Future studies: clear inclusion criteria, categorization of lesions (complicated vs uncomplicated), radiographic follow-up
- Though myeloma is a radioresponsive disease, surgical intervention should be considered for impending/path fracture, bony retropulsion
 - Role of surgery for cord compression is unknown are there a subset of patients that may benefit?

Questions

W UNIVERSITY of WASHINGTON